skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Aziz, Michael J"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Flow cell electrodes are typically composed of porous carbon materials, such as papers, felts, and cloths. However, their random architecture hinders the fundamental characterization of electrode structure‐performance relationships during in situ operation of porous electrochemical flow systems. This work describes a “print‐and‐plate” method that combines direct ink writing of micro‐periodic lattices with a two‐step metal plating process that converts them into highly conductive (sheet resistance 40 mΩ sq−1) electrodes. Theiroperandoperformance is assessed in an anthraquinone disulfonic acid half‐cell using widefield electrochemical fluorescence microscopy, where output current and fluorescence intensity are in excellent agreement. The pressure drop associated with flow through three electrode designs is determined via simulations from which the most efficient design is identified and manufactured via print‐and‐plate. Confocal fluorescence microscopy is then used to create a 3D map of the state of charge (SOC) inside this print‐and‐plate electrode. The experimental state of the charge map is in good agreement with computational predictions. The rapid design, simulation, and fabrication of print‐and‐plate electrodes enable fundamental investigations of how architected porosity affects electrochemical performance under flow. 
    more » « less
    Free, publicly-accessible full text available March 10, 2026
  2. We provide a simple and inexpensive manual DC-offset method for extending the accepted voltage range of a battery cycler to negative voltages, without interfering with the actual operation of the electrochemical cell under the test or exceeding the voltage specs of the battery cycler instrument. We describe the working principles of the method and validate the proposed setup by operating short-term and long-term redox flow battery cycling using compositionally symmetric cell, with open-circuit voltage of zero, and full cell configurations. The method can be used to extend the capability of battery cycler instrumentation to operate any electrochemical cell that requires the polarity to be reversed during operation. Applications include cycling of other symmetric cells (e.g., Li-ion cells), implementation of polarity reversal steps for rejuvenation of electroactive species or rebalancing electrochemical cells, and alternating polarity for electrochemical synthesis. 
    more » « less
  3. We perform a thermodynamic analysis of the energetic cost of CO 2 separation from flue gas (0.1 bar CO 2 (g)) and air (400 ppm CO 2 ) using a pH swing created by electrochemical redox reactions involving proton-coupled electron transfer from molecular species in aqueous electrolyte. In this scheme, electrochemical reduction of these molecules results in the formation of alkaline solution, into which CO 2 is absorbed; subsequent electrochemical oxidation of the reduced molecules results in the acidification of the solution, triggering the release of pure CO 2 gas. We examined the effect of buffering from the CO 2 –carbonate system on the solution pH during the cycle, and thereby on the open-circuit potential of an electrochemical cell in an idealized four-process CO 2 capture-release cycle. The minimum work input varies from 16 to 75 kJ mol CO2 −1 as throughput increases, for both flue gas and direct air capture, with the potential to go substantially lower if CO 2 capture or release is performed simultaneously with electrochemical reduction or oxidation. We discuss the properties required of molecules that would be suitable for such a cycle. We also demonstrate multiple experimental cycles of an electrochemical CO 2 capture and release system using 0.078 M sodium 3,3′-(phenazine-2,3-diylbis(oxy))bis(propane-1-sulfonate) as the proton carrier in an aqueous flow cell. CO 2 capture and release are both performed at 0.465 bar at a variety of current densities. When extrapolated to infinitesimal current density we obtain an experimental cycle work of 47.0 kJ mol CO2 −1 . This result suggests that, in the presence of a 0.465 bar/1.0 bar inlet/outlet pressure ratio, a 1.9 kJ mol CO2 −1 thermodynamic penalty should add to the measured value, yielding an energy cost of 48.9 kJ mol CO2 −1 in the low-current-density limit. This result is within a factor of two of the ideal cycle work of 34 kJ mol CO2 −1 for capturing at 0.465 bar and releasing at 1.0 bar. The ideal cycle work and experimental cycle work values are compared with those for other electrochemical and thermal CO 2 separation methods. 
    more » « less
  4. null (Ed.)
    We demonstrate the electrochemical oxidation of an anthracene derivative to a redox-active anthraquinone at room temperature in a flow cell without the use of hazardous oxidants or noble metal catalysts. The anthraquinone, generated in situ , was used as the active species in a flow battery electrolyte without further modification or purification. This potentially scalable, safe, green, and economical electrosynthetic method is also applied to another anthracene-based derivative and may be extended to other redox-active aromatics. 
    more » « less